

CCAT-prime: a high throughput, high sensitivity telescope for star and galaxy formation and cosmology

Gordon Stacey Cornell University

Representing the CCAT consortium

Who is CCAT-prime?

- Cornell University
- German consortium led by University of Cologne
 - Cologne, Bonn, Ludwig Maximilian, Max Planck Inst. for Astrophysics
 Formed CCAT Observatory, Inc.
- Canadian consortium led by University of Waterloo
 - Waterloo, Toronto, British Columbia, Calgary, Dalhousie, McGill, McMaster, Western Ontario

Formed Canadian Atacama Telescope Corp (CATC)

CCAT is a Joint Venture between CCAT Corp & CATC

What is CCAT-Prime?

CCAT-Prime is a high surface accuracy 6 m submm telescope

Where is CCAT-prime?

Cerro Chajnantor at 5600 m

6 meters? Why are we doing this?

- Unique site enables unique science
- High accuracy (< 11 µm rms), low blockage telescope (< 1%) maximizes surface brightness sensitivity
- Extraordinary throughput optimizes for science enabled by large scale surveys
- CCAT-prime paves the way for a large (25 meter) aperture at the site

5000 meter is good, but 5600 meters is better

- Submillimeter sensitivity is all about telluric transmission
- Simon Radford ran tipping radiometers at primary sites for more than a decade –
- Simultaneous period for CCAT vs. ALMA site: median is 0.6 vs. 1 mm $H_2O \Rightarrow factor of 1.7 in sensitivity$

Radford & Peterson, arXiv:1602.08795

Water Vapor Scale Height

T	$ au(350) \ { m Chaj.} \ { m plateau}$		μm) Cerro Chaj.	PWV Chaj. plateau	[mm] Cerro Chaj.	WV scl. ht. $[m]^*$
	$75\ \%\ 50\ \%\ 25\ \%$	$2.7 \\ 1.5 \\ 1.0$	$1.9 \\ 1.1 \\ 0.7$	$2.0 \\ 1.0 \\ 0.53$	$1.3 \\ 0.6 \\ 0.28$	$1280 \\ 1080 \\ 860$
	* WV s	cale height =	$= 550 \mathrm{m/ln}($	(PWV_{cp}/PW)	$V_{\rm cc})$	

12 June 2017

IM Workshop II, Johns Hopkins

Median Zenith Transmission

Chajnantor Site opens up the THZ Windows

ATM 2002 Model (Pardo et al.)

The CCAT-P Concept

6-meter off-axis submm telescope located at CCAT site at 5600 meters on Cerro Chajnantor

- Surface accuracy of <10 μm (7 μm goal)
- High site gives routine access to 350 μ m, 10% best weather to 200 μ m, advantage at longer λ s
- Novel off-axis crossed-Dragone design yielding ⇒ wide, flat field-of-view for Galactic, Cluster, and EoR science
- Optimized throughput ⇒ platform for as
 Stage 4 CMB observatory
- Plan targeted "campaign-mode" science: aperture size, throughput, mapping speed, superb site

Being designed and built by Vertex Antennentechnik GmbH

Crossed Dragone Design

Optics tubes are mostly enclosed in Strehl>0.8 (diffraction-limited) 3 mm = 37 OT26,000 pixels2 mm = 33 OT58,000 pixels1 mm = 19 OT110,000 pixels0.35 mm = 7 OT400,000 pixels

P-Cam

- Seven subcamera "tubes" populated with TES bolometers
- FoV ~ 0.9 degree with feedhorn fed 1.5 λ /D pixels
 - 20,000 to 60,000 pixels per subcamera @ 350 μm ; numbers scale from 60,000 as $1/\lambda^2$
 - dichroic polarization sensitive bolometers at longer wavelengths
- Cameras are modular (size, optics, filtration), easily exchanged
- Start with very modest numbers of pixels and growth to fill out camera, then entire CCAT-Prime FoV if so desired

CCAT-Prime Science

- GEco: Star formation in the Milky Way, the Magellanic clouds and other nearby galaxies through submm spectroscopy and photometry
- **kSZ:** Probing of the nature of dark energy, gravity on large scales and neutrino mass sum through kinetic SZ effect
 - Polarization foregrounds: Galactic dust science & CMB poln corrections
- **GEvo:** Evolution of DSFG through submm-mm wave surveys.
- **IM-EoR:** EoR intensity mapping in [CII] at redshifts from 5 to 9.
- Stage 4 CMB: CMBR polarization at 10 times the speed of current facilities ⇒ inflationary gravity waves and the sum of the neutrino masses.

GEco: Galactic Ecology Science

- 15" imaging over 200 (°)² scales of the Milky Way, LMC, SMC in:
 - [CI] tracing gas temperature and mass
 - Mid and high-J CO & ¹³CO tracing gas excitation, shocks, density and mass
 - Also: [NII] tracing embedded SF regions and numbers of ionizing photons
- Tracing accumulation and flows of gas into cores and young stars
- Requires high site for short submm (200 µm, or 1.5 THz) studies

kSZ: Cluster Science through the Sunyaev-Zel'dovich Effects

Direct observations of the most massive bound entities in the Universe through Sunyaev-Zel'dovich effects

- 7 colors: 0.35 to 3 mm spectral coverage separates out the tSZ, rSZ, radio galaxies and submm galaxies from kSZ
- **Constraints:** optical depth, velocity, and electron temperature

Fundamental Physics Probes

Directly measure velocities of 1000's of clusters

- Constrains and/or eliminate models about dark energy and modified gravity.
- Improve constraints on the measurements of the sum of the neutrino masses.
- Cluster characterization to inform cosmology
- Example Survey 1000 (°)² measuring 3000 clusters with M > 2.7 \times 10¹⁴ M_{\odot} in 3000 hrs

-0.02

-800

-600

-400

-200

Velocity [km/s]

0

F. de Bernardis and A. Mittal

200

400

CCAT

12 June 2017

P-Cam 350 um

Obscured SF over

Cosmic Time

- CCAT-p aperture lowers 3.5m Herschel confusion limits
- Herschel surveys limited to ~ 6.3 mJy (1 σ) confusion limit
- 5.5 m CCAT-p goes a factor of ~ 2.6 deeper/into the confusion
 - 2.4 mJy (1σ) in 3 hrs @350 μm
- One camera, using best 50% weather $\rightarrow 100^{(\circ)2}$ (or 300 $(^{\circ})^{2}!$) survey @ 350 μ m) per year
- Pushes down the luminosity function in the most active epoch star formation in the Universe

P-Cam Subcamera

 $FoV = 0.9^{\circ}$

Oliver et al. (2010, 2011)

18

CCAT-prime and Herschel

Courtesy of B. Magnelli

EoR-IM: Intensity Mapping of [CII] in the Epoch of Reionization

- Aggregate [CII] signal from star forming galaxies at z ~ 5 to 9 \Rightarrow 3-D information:
 - Reveals the *process of reionization* and the underlying dark matter distribution over the cosmic time when the first galaxies formed
 - Combine with SKA 21 cm HI line tracing neutral ISM concentrations

(a) Overdensity ρ/ρ at z = 6.49.

(b) Redshift of reionization, defined as the redshift at which the hydrogen neutral fraction first dips below 10^{-3} .

Reionization appears not to occur instantaneously, but rather depends on local density (see Finlator et al. 2009). First things to reionize are overdense regions, then voids, then moderate-density structures.

IM Workshop II, Johns Hopkins

Simulating Reionization

Intensity Mapping of [CII] from the EOR

- Measure large scale spatial fluctuations of collective aggregate of faint galaxies via redshifted [CII] 158 μ m line (+possibly other lines at other z's)
 - Resolution into individual galaxies not required
 - Clustering scale 0.5 to 1 Mpc or ~1-2' at z = 5-9, good match for 6-m aperture (40"@ 1mm)
 - 16°² surveys: spectral/spatial mapping speed critical
 - FoV ~ > 1° matches 40 Mpc void size-scale: systematics
 - Need moderate spectral resolution R ~ 300-500
 - Bandwidth of z ~ 5-9 signal is 0.95-1.6 mm (190-315 GHz)
 - Identify interloper lower z CO by line multiplicity complete at z > 0.8
 - Sensitivity is at a premium: high site, very low emissivity telescope is essential!

Prediction of the [CII] Signal Strength Gong et al 2012

TABLE 1

EXPERIMENTAL PARAMETERS FOR A POSSIBLE CII MAPPING INSTRUMENT.

Aperture diameter (m)	1	3	10	_				
Survey Area $(A_{\rm S}; \deg^2)$	16	16	16	_				
Total integration time (hours)	4000	4000	4000					
$\frac{\text{Free spectr}}{\text{Freq. resol}}$ Noise requirement = 8 × 2	10 ⁻¹⁴ W/	m²/sr ′	$ \begin{array}{r} 185 - 310 \\ 0.4 \end{array} $	RP = 500				
Number of bolometers	20,000	20,000	20,000					
Number of spectral channels	312	312	312					
Number of spatial pixels	64	64	64					
Beam size ^a (θ_{beam} ; FWHM, arcmin)	4.4	1.5	0.4					
Beams per survey area ^a	2.6×10^{3}	2.3×10^{4}	2.6×10^{5}	-				
$\sigma_{\rm pix}$: Noise per detector sensitivity ^a (Jy \sqrt{s}/sr)	$2.5 imes 10^6$	$2.5 imes 10^6$	2.5×10^6					
$t_{\rm pix}^{\rm obs}$: Integration time per beam ^a (hours)	100	11	1.0	_				
$z = 6 V_{\rm pix} \ ({\rm Mpc/h})^3$	217.1	24.1	2.2	_				
$z = 7 V_{\rm pix} \ ({\rm Mpc/h})^3$	332.9	37.0	3.3					
$z = 8 V_{\text{pix}} (\text{Mpc/h})^3$	481.3	53.5	4.8					
$z = 6 P_N^{\text{CII}} (\text{Jy/sr})^2 (\text{Mpc/h})^3$	5.4×10^{9}	5.4×10^{9}	5.3×10^{9}	—				
$z = 7 P_N^{\text{CII}} (\text{Jy/sr})^2 (\text{Mpc/h})^3$	4.8×10^9	4.9×10^{9}	4.8×10^{9}					
$z = 8 P_N^{\text{CII}} (\text{Jy/sr})^2 (\text{Mpc/h})^3$	4.4×10^{9}	4.4×10^{9}	4.3×10^{9}	_				
^a values computed at 238 GHz, corresponding to CII at $z = 7$.								

Large BW × FoV Spectrometer

- Trans-mm wave from ~ 0.95 to 1.6 mm (315-188 GHz)
- Direct detection for optimal sensitivity
- Resolving power requirement is modest, ~ 500 or 600 km/sec
- Need a spectral × spatial product > 20,000 to complete a 16^{°2} survey in 4000 hours.
- Spectrometer extremes:
 - 312 spectral positions, 64 spatial positions w/ grating
 - 1 spectral sample, 20,000 spatial positions w/ FPI

EoR IM Science Program

- The spectral multiplexer is challenging at present
- The spatial multiplexer is very straight-forward
- Requiremen One third (or even Predictions: 9 1/6th) the number of Using 3.2 car pixels of grating mm wavele because we accepted required a 4 spatial modes
 IOOO hours es of weather: to 1.1 and 1.4 ² field to the N/m²/sr in

4000 hours integration time

Total number of pixels: 3.2 \times 1050 (dichroic) or 6.4 \times 1050 single color

A Tough Experiment!

- The zenith transmission is:
 - 97.9 to 96.6% at our site
 - 96.9 and 95.1% at ALMA site
- Telescope emissivity is 2%
 - Going off-axis makes a difference!
- System emissivity is ~ 5.9%
 - Going to 5600 m makes a difference!
 - Would need 4.1 compared with 3.2 tubes
 - Window emissivity makes a difference (2%)
- Spectrometer transmission is 40% including DQE of 80%
 Note that the same stringent requirements hold for the grating spectrometer

Fabry-Perots in Development

 $R = 10^6$ FPI at 112 um for HIRMES on SOFIA

- These are based on free-standing metal mesh
- Developing silicon substrate-based FPI:
 - Silicon AR coatings (dual layer) with microstructures
 - Metalized (superconducting) broad-band reflectors

Comparisons to other Coeval Facilities

- **EOR IM:** surface brightness: WFE, emissivity, site, and FoV:
 - Sensitivity (Jy/beam) \propto
 - 1/Ruze Efficiency
 - ~ (System Emissivity)^{1/2} telescope, warm optics and sky
 - 1/(warm transmission) includes telescope efficiency, sky transparency
 - Mapping Speed ∞
 - (Sensitivity referred to EOR beam)²
 - Field of view accepted/field of view of P-Cam subcamera

Teles.	WFE (rms), Ruze eff.	Med. PWV	η _{sky} (245 GHz)	tel. emis.	Raw Sens. ²	P-Cam FoV	FoV (dia.)	Mapping Speed
APEX	17 μm, 97%	1.0	0.945	10%	0.86	24.8′	11.4'	1/16
JCMT	25 μm, 93%	2.0	0.901	10%	0.93	19.8′	9.0′	1/28
LMT	70 μm, 58%	2.0 ¹	0.901	15%	0.51	5.9′	8.0′	1/77
CCAT-p	10.5 µm, 99%	0.60	0.962	2.8%	1	54'	143	1→7
¹ This weather is only 4 months/year: ² Refers to a 65" beam and source elevation of 50°								

Comparisons to other Coeval Facilities

• **kSZ; GEvo:** short submm bands: WFE, emissivity, site, and FoV:

Point source foregrounds

Teles.	WFE (rms), Ruze eff.	1 st Q PWV	ղ _{sky} (860 GHz)	tel. emis.	Raw Sens. ²	P-Cam FoV	FoV (dia.)	Mapping Speed
APEX	17 μm, 69%	0.6	0.25	10%	0.54	24.8′	11.4'	1/1.4 ³ -1/5.9 ⁴
JCMT	25 μm, 44%	1.0	0.12	10%	1.31	19.8′	9.0′	1/8.3 ³ -1/56 ⁴
LMT	50 μm, 4%	1.0 ¹	0.12	15%	1.47	5.9'	8.0′	1/8.6 ³ -1/640 ⁴
CCAT-p	10.5 μm, 87%	0.4	0.39	2.8%	1	54'		1→7

¹This weather is only 4 months/yr; ² *Point source* – el. = 50°; ³beams, ⁴areal coverage

1'-scale kSZ Science

Teles.	WFE (rms), Ruze eff.	Med. PWV	ղ _{sky} (245 GHz)	tel. emis.	Raw Sens. ²	P-Cam FoV	FoV (dia.)	Mapping Speed
APEX	17 μm, 97%	1.0	0.945	10%	0.86	24.8′	11.4′	1/16
JCMT	25 μm, 93%	2.0	0.901	10%	0.93	19.8′	9.0'	1/28
LMT	70 μm, 58%	2.0 ¹	0.901	15%	0.51	5.9'	8.0'	1/77
CCAT-p	10.5 µm, 99%	0.60	0.962	2.8%	1	54'		1→7

¹This weather is only 4 months/year; ²Refers to a 65" beam and source elevation of 50°

Schedule

Four (4) year project (July 2017 to June 2021)

- 20 months Detailed Design [PDR @ 4 mths; CDR @ 10 months, FDR @ 18 months.]
- 13 months Fabrication which includes a Trial Assembly in Germany
- 3 months Shipping & Receiving
- 12 months Assembly/Checkout
 - Incl. 3 months unpacking/inspection and sequenced transport to Summit

2016 CCAT. All Rights Reserved. www.ccatobservatory.org